Euler-Bernoulli beam with tip mass and passivity-based control
Do you like this product? Spread the word!
Check other buying options
Sold by Dodax EU
Description
In this work, time evolution of a cantilever with a tip body is considered. The cantilever is modeled by the Euler-Bernoulli beam equation. A passivity based dynamic feedback controller is applied at the free end to include damping. The main question considered in this work is the long-term behavior of such controlled systems, in particular the asymptotic stability. To perform the stability analysis, the system is posed as an evolution problem. Identifying an appropriate Lyapunov functional proves to be fundamental for the analysis. Demonstrating the precompactness of system trajectories, the asymptotic stability follows from La Salle's invariance principle. However, when the control law includes nonlinearities, the proof for the precompactness of the system trajectories is difficult and a novel approach needs to be developed. Another considered problem is a numerical method for the controlled Euler-Bernoulli beam system. The finite element method is utilized for the space discretization, and the Crank-Nicolson scheme for time discretization. To illustrate the effectiveness and dissipativity of the developed numerical method, simulation results are presented.
Contributors
Author Maja Miletic
Product Details
DUIN 1EOB7P8GU2C
GTIN 9783639872293
Language English
Pages 168
Product type Paperback
Dimension 8.66 x 5.91 x 0.35 inches
Product Weight 8.47 ounces