Finite Element Concepts - A Closed-Form Algebraic Development

by Gautam Dasgupta
Condition: New
VAT included - FREE Shipping
Gautam Dasgupta Finite Element Concepts - A Closed-Form Algebraic Development
Gautam Dasgupta - Finite Element Concepts - A Closed-Form Algebraic Development

Do you like this product? Spread the word!

$92.59 incl. VAT
Only 1 items available Only 1 items available More than 10 pieces available
Delivery: between Tuesday, July 5, 2022 and Thursday, July 7, 2022
Sales & Shipping: Dodax


This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig’s isoparametric interpolants and Iron’s patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples.


Gautam Dasgupta

Further information

Illustrations Note:
XXXVI, 333 p. 45 illus.
Table of Contents:

1. Bar.- 2. Trusses.- 3. 2-D Llinear Interpolation.- 4. Triangular Elements.- 5. Taig’s Convex Quadrilateral Elements.- 6. Irons patch test.- 7. Eight DOFs.- 8. Incompressibility.- 9. Conclusions.

The textbook is suitable for a two semester undergraduate or a one semester graduate course

Suitable for engineering, applied mathematics and physics students

Modeled for Civil, mechanical, bio-engineering and engineering mechanics disciplines

Self-study, in styling the book, encourages researchers towards innovative and independent thinking

Synthesizes numerics and graphics through symbolic computation

Mathematica® routines, for transformation and closed form integration on arbitrary convex, concave and curved regions, can be easily integrated in any C++ code for production runs

Also, appropriate for animation and augmented reality industries for color distribution and morphology

Includes supplementary material:

Media Type:
Springer US
Biography Artist:
Dr. Gautam Dasgupta has been a member of Columbia University faculty since 1977. He has published in the areas of engineering mechanics and computer mathematics including graphics and music. He constructed numerical forms of the viscoelastic correspondence principle, introduced the cloning algorithm to model frequency responses of infinite (unbounded) media with finite elements, derived stochastic shape and Green's functions for finite and boundary element, and proved the Almansi Theorem for anisotropic continua.

1st ed. 2018
Number of Pages:

Master Data

Product Type:
Hardback book
Package Dimensions:
0.24 x 0.154 x 0.024 m; 0.76 kg
We use cookies on our website to make our services more efficient and more user-friendly. Therefore please select "Accept cookies"! Please read our Privacy Policy for further information.